Distributed Algorithms

Causal & Total Order Broadcast
3rd exercise session

Matteo Monti <matteo.monti@epfl.ch>
Jovan Komatovic <jovan.komatovic@epfl.ch>

mailto:matteo.monti@epfl.ch
mailto:jovan.komatovic@epfl.ch

Exercise 1

Would it make sense to add the total-order property to the best-effort broadcast?

Consensus-Based Total-Order Broadcast algorithm

Exercise 2

What happens in our "Consensus-Based
Total-Order Broadcast" algorithm, if the
set of messages delivered in a round is
not sorted deterministically after deciding
in the consensus abstraction, but before
it is proposed to consensus?

What happens in that algorithm if the set
of messages decided on by consensus is
not sorted deterministically at all?

upon event { tob, Init) do
unordered = (;
delivered := 0
round :=1;
wait ;= FALSE;

upon event (tob, Broadcast | m) do
trigger (rb, Broadcast | m);

upon event (rb, Deliver | p, m) do
if m ¢ delivered then
unordered := unordered U {(p, m)};

upon unordered # () A wait = FALSE do
wait := TRUE;
Initialize a new instance c.round of consensus;
trigger (c.round, Propose | unordered);

upon event (c.r, Decide | decided) such that » = round do
/] by the order in the resulting sorted list
forall (s, m) € sort(decided) do
trigger (tob, Deliver | s, m);
delivered := delivered U decided,
unordered := unordered \ decided;
round = round + 1;
wait := FALSE;

Exercise 3

The "Consensus-Based Total-Order Broadcast" algorithm transforms a consensus
abstraction (together with a reliable broadcast abstraction) into a total-order
broadcast abstraction.

Describe a transformation between these two primitives in the other direction, that
is, implement a (uniform) consensus abstraction from a (uniform) total-order
broadcast abstraction.

